Branching of {110) twin boundaries in five-layered Ni-Mn-Ga bent single crystals
نویسندگان
چکیده
منابع مشابه
Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملInter-martensitic transitions in Ni–Fe–Ga single crystals
The strain–temperature response of Ni–Fe–Ga single crystals underscores the role of the inter-martensitic transformation in creating intersecting heating and cooling segments; the separation of these segments occurs due to irreversibilities at high stresses and at high temperatures. An ultra-narrow tensile (1 C) and compressive (<10 C) thermal hysteresis are observed for the A 10M 14M case, acc...
متن کاملPhonon softening in Ni-Mn-Ga alloys
The TA2 phonon dispersion curves of Ni-Mn-Ga alloys with different compositions which transform to different martensitic structures have been measured over a broad temperature range covering both paramagnetic and ferromagnetic phases. The branches show an anomaly (dip) at a wave number that depends on the particular martensitic structure, and there is softening of these anomalous phonons with d...
متن کامل6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga
Field-induced strains of 6% are reported in ferromagnetic Ni–Mn–Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocke...
متن کاملCharacterizing Twin Structure and Magnetic Domain Structure of Ni-Mn-Ga through Atomic Force
Ni-Mn-Ga is a ferromagnetic shape memory alloy that deforms by twin boundary motion. The magneto-mechanical properties depend strongly on the twin microstructure. A thermomechanical treatment was applied to a Ni-Mn-Ga single crystal with coexisting 10M and 14M martensite structures to create twin boundaries and align the short crystallographic c direction preferentially perpendicular to the sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials & Design
سال: 2019
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2019.107703